Physics prelim exam (Electromagnetism, Spring 2016)

Please pick two problems to complete and specify explicitly which two problems you pick.

Problem 1

At one instant, the electric and magnetic fields at one point of an EM wave are:

\[\vec{E} = (200 \hat{x} + 300 \hat{y} - 50 \hat{z}) \text{ V/m} \]
\[\vec{B} = B_0 (7.3 \hat{x} - 7.3 \hat{y} - a \hat{z}) \times 10^{-6} \text{ T} \]

- What are the values of \(a \) and \(B_0 \)?
- What is the Poynting vector at this time and position?

Problem 2

You have an imaginary device to measure any parameter you wish of both electric and magnetic fields (amplitude, phase, frequency, wavelength). You have a mystery thin sheet of material (thickness of 0.1 micron) on which a 1 MHz electromagnetic field is incident - how will you determine if it is a conductor or dielectric?

Your device cannot measure anything except the above. For a comparative measure, copper has a skin depth of 1 micron at 1 MHz.

Problem 3

A positively charged particle with charge \(q \) and mass \(m \), and with velocity \(\vec{v} = v_0 \hat{x} \) is injected at time \(t = 0 \) into a region of the x-y plane where there is a uniform magnetic field \(\vec{B} = B_0 \hat{z} \)

Assume that \(v \ll c \) and that any observer is far away.

(a) Find an expression for the radius \(R \) of the circular trajectory of the particle in terms of \(m \), \(q \), \(v_0 \), and \(B_0 \).
(b) What is the angular frequency \(\omega \) of the radiation?
(c) What is the acceleration of the particle at time \(t \)? Give the magnitude and direction
(d) Give the magnitude and direction of the electric field \(E \) detected by a distant observer at \(+r_0 \hat{z} \). What is the nature of the polarization? By “nature” explain if it is polarized at all, and if so, is it linearly polarized or circularly or elliptically polarized?