## Prelim: Quantum Mechanics Fall 2013 Saturday September 14 2013 Choose 2 out of 3 questions

## Problem 1: Hydrogen Atom (20 points)

An electron is bound in a hydrogen atom. Its state at t = 0 is

$$\psi(r,\theta,\varphi) = \frac{1}{\sqrt{6}} \left( \psi_{100} + \sqrt{2}\psi_{211} + \sqrt{3}\psi_{310} \right) \tag{1}$$

where  $\psi_{nlm}$  are the usual normalized energy eigenfunctions of the H-atom. We will *neglect spin* in this problem.

- a. What is the expectation value of the energy in state  $\psi$  ?
- b. Suppose at t=0 you measured the energy and observed  $E_2$  (i.e. n=2). Write down the resulting  $\psi(r,\theta,\varphi,t)$  for t>0.
- c. Another atom is prepared in the original state given by equation (1). At t=0 we measure the angular momentum squared and find  $2\hbar^2$  (i.e. l=1). What was the probability of getting this value?
- d. *After* the measurement of  $L^2$  described in part (c) is made (with result  $2\hbar^2$ ), what is the probability that a measurement of the z-component of angular momentum would yield  $\hbar$ ? Explain.

## Problem 2: Harmonic Oscillator (20 points)

Several relations using raising and lowering operators for the quantum Harmonic Oscillator are reproduced below:

$$a_{\pm} = \frac{1}{\sqrt{2\hbar m\omega}} (\mp i\hat{p} + m\omega x), \quad a_{+}\psi_{n} = \sqrt{n+1} \ \psi_{n+1}, \qquad a_{-}\psi_{n} = \sqrt{n} \ \psi_{n-1}$$

$$And, \int_{-\infty}^{+\infty} f^{*}(a_{\pm}g) \ dx = \int_{-\infty}^{+\infty} (a_{\mp}f)^{*}g \ dx$$

a. Using the above, show that the eigenvectors of the Hamiltonian oscillator are orthogonal, i.e. prove  $\int_{-\infty}^{+\infty} \psi_n^*(x) \psi_m(x) \ dx = 0$ , if n is not equal to m.

Hint! Try evaluating 
$$\int_{-\infty}^{+\infty} \psi_n^*(x) a_+ a_- \psi_m(x) \ dx$$

b. Consider a particle in a quantum mechanical harmonic oscillator, with energy E (shown in the figure).Consider two possibilities that could be true for this figure:



- Possibility #1: this particle is in its ground state.
- Possibility #2: this particle is in a highly excited state,  $n \gg 0$ .

For which of these two possibilities is the particle more likely to be found within the region  $-x_o \le x \le -x_o + A$  (marked "A" in the figure), or is it equally likely in either case? Briefly explain.

## **Problem 3: Commutators & Uncertainty Principles (20 points)**

Prove the famous "(your name) uncertainty principle," relating the uncertainty in position (A=x) to the uncertainty in energy  $(B=p^2/2m+V)$ 

$$\sigma_x \sigma_H \ge \frac{\hbar}{2m} | |$$

For stationary states, this doesn't tell you much—why not?