Practical BSE Calculations with BerkeleyGW

Diana Y. Qiu (Adapted from presentation by Felipe Jornada)

June 4, 2020 Electronic Structure Workshop, UC Merced

Yale

Optical Absorption Spectrum

Photon energy (eV)

M. Rohlfing, S. G. Louie, PRB 62, 8 (2000).
 D. Qiu, F. H. da Jornada, S. G. Louie, PRL 111, 216805 (2013).
 K. F. Mak, F. H. da Jornada, et al., PRL 112, 207401 (2014).

Optical Absorption Spectrum

Photon energy (eV)

M. Rohlfing, S. G. Louie, PRB 62, 8 (2000).
 D. Qiu, F. H. da Jornada, S. G. Louie, PRL 111, 216805 (2013).
 K. F. Mak, F. H. da Jornada, et al., PRL 112, 207401 (2014).

Outline

#1 – Theoretical and methodological overview

#2 – Typical BSE workflow in BerkeleyGW

#3 – Issues unique to the BSE code

Theory Overview – Excitons

Theory Overview: GW-BSE

• Bethe-Salpeter Equation \rightarrow Effective Hamiltonian:

 $H^{\text{BSE}}\Psi_S(\mathbf{r}_e,\mathbf{r}_h) = \Omega_S\Psi_S(\mathbf{r}_e,\mathbf{r}_h)$

 $H_{vc\mathbf{k},v'c'\mathbf{k}'}^{\text{BSE}} = (E_{c\mathbf{k}} - E_{v\mathbf{k}})\delta_{\mathbf{k},\mathbf{k}'} + K_{vc\mathbf{k},v'c'\mathbf{k}'}$

Interaction Kernel

Absorption

$$\epsilon_2 \propto \sum_S |\langle 0 | \mathbf{v} | S \rangle|^2 \delta(\omega - \Omega_S)$$

Rohlfing and Louie, PRB 62, 4947 (2000). Deslippe et al, Comput. Phys. Commun. 183, 1269 (2012).

Methodological Overview: BerkeleyGW Interpolation Scheme

Challenge: compute quasiparticle corrections and kernel matrix elements on a VERY FINE K-GRID! Eg: 300x300 k-grid for MoS₂

Methodological Overview: BerkeleyGW Interpolation Scheme

• Expensive to compute kernel matrix elements $\langle vc \mathbf{k}_{fi} | K | v'c' \mathbf{k}'_{fi} \rangle$

Strategy:
$$\langle vc\mathbf{k}_{co}|K|v'c'\mathbf{k}_{co}'\rangle \longrightarrow \langle vc\mathbf{k}_{fi}|K|v'c'\mathbf{k}_{fi}'\rangle$$

- BerkeleyGW: projection interpolation
 - Explicitly generate coarse- and fine-grid WFNs
 - Expand fine-grid WFNs in term of coarse-grid WFNs.
 - No need to perform Wannier interpolation, etc.
 - Captures band crossing, etc.

Methodological Overview: BerkeleyGW Interpolation Scheme

- Step 0: Obtain WFNs on a coarse and fine grid.
- Step 1: Expand fine WFNs in terms of coarse WFNs

$$u_{n\mathbf{k}_{\mathrm{fi}}} = \sum_{n'} C_{n,n'}^{\mathbf{k}_{\mathrm{co}}} u_{n'\mathbf{k}_{\mathrm{co}}} \quad C_{n,n'}^{\mathbf{k}_{\mathrm{co}}} = \int d\mathbf{r} \, u_{n\mathbf{k}_{\mathrm{fi}}}(\mathbf{r}) u_{n'\mathbf{k}_{\mathrm{co}}}^{*}(\mathbf{r})$$

Step 2: Interpolate QP energies (assume Σ is diagonal in $(n\mathbf{k})$):

$$E_n^{\rm QP}(\mathbf{k}_{\rm fi}) = E_n^{\rm MF}(\mathbf{k}_{\rm fi}) + \left\langle \sum_{n'} \left| C_{n,n'}^{\mathbf{k}_{\rm co}} \right|^2 \left(E_{n'}^{\rm QP}(\mathbf{k}_{\rm co}) - E_{n'}^{\rm MF}(\mathbf{k}_{\rm co}) \right) \right\rangle_{\mathbf{k}_{\rm co}}$$

Step 3: Interpolate BSE kernel matrix elements (head+wings+body)

$$\langle vc\mathbf{\underline{k}_{fi}}|K|v'c'\mathbf{\underline{k}'_{fi}}\rangle = \sum_{n_1,n_2,n_3,n_4} C^{\mathbf{k}_{co}}_{c,n_1} C^{*\mathbf{k}_{co}}_{v,n_2} C^{*\mathbf{k}'_{co}}_{c',n_3} C^{\mathbf{k}'_{co}}_{v',n_4} \langle n_2 n_1 \underline{\mathbf{k}_{co}}|K|n_4 n_3 \underline{\mathbf{k}'_{co}}\rangle$$

BERKELEYGW INTERPOLATION SCHEME

In practice: trading bands for k-points

- How to get a good interpolation?
 - Include a large number of bands from the coarse grid and start from a coarse grid that is not too coarse.

BERKELEYGW INTERPOLATION SCHEME

Did I include enough bands?

$$\operatorname{Error}(\mathbf{n}, \mathbf{k}_{\mathrm{fi}}) = 1 - \sum_{n'} \left| C_{n,n'}^{\mathbf{k}_{\mathrm{fi}}} \right|^2$$

Calculated

🔵 Interpolated

- Detail of "completion relation":
 - > dvmat_norm.dat
 - b dcmat_norm.dat
- absorption.out / inteqp.out

Outline

#1 – Theoretical and methodological overview

#2 – Typical BSE workflow in BerkeleyGW

#3 – Issues unique to the BSE code

BERKELEYGW WORKFLOW

Step 0: Calculate QP-corrected band structure on a coarse grid

epsmat.h5, $\{E_c\}_{co}$, $\{E_v\}_{co}$

Step 1: Calculate BSE kernel on the same coarse grid $[K]_{co}$

absorption.x

kernel.x

Step 2: Interpolate to a <u>fine k-grid</u> and build BSE Hamiltonian... $[H]_{co} \Rightarrow [H]_{fi}$

... and diagonalize BSE Hamiltonian

evals $[H]_{\mathrm{fi}} \Rightarrow \varepsilon_2$

1. KERNEL

<u>kernel.</u>

Step 1: Calculate BSE kernel on the same coarse grid $[K]_{co}$

- Time consuming: Computes $(n_v n_c n_k)^2$ matrix elements
- Uses a coarse-grid WFN_co

Use same WFN co as in Sigma (WFN inner)

1. KERNEL

Sample kernel.inp

number_val_bands <?>
number_cond_bands <?>

<?>_symmetries_coarse_grid
screening_<?> |

You'll typically want to use symmetries here, so put: use_symmetries_coarse_grid $\{u_{n'\mathbf{k}_{co}}\}$

Bands counted wrt FE:

- vbm, vbm-1, ...
- cbm, cbm+1, ...

Remember to calculate Kernel on more bands because of the interpolation!

(# of bands in Sigma can't be less than this number!)

2. ABSORPTION

absorption.x

Step 2: Interpolate to a <u>fine k-grid</u> and build BSE Hamiltonian... $[H]_{co} \Rightarrow [H]_{fi}$... and diagonalize BSE Hamiltonian evals $[H]_{fi} \Rightarrow \varepsilon_2$

Absorption needs same coarse WFN_co from Kernel

$$\varepsilon_{2}(-\mathbf{q},\omega) \propto \sum_{S} |\langle 0|\hat{\boldsymbol{v}}|S\rangle|^{2} \delta[\omega - \Omega_{S}] \qquad \langle 0|\hat{\boldsymbol{v}}|S\rangle = \frac{\Omega_{S}}{q} \sum_{\nu c \mathbf{k}} A_{\nu c \mathbf{k}}^{S} \langle \nu \mathbf{k} + \mathbf{q} | e^{-i\mathbf{q}\cdot\mathbf{r}} | c \mathbf{k} \rangle$$

- Typically q is 10⁻³
- We need two fine WFN files:
 - WFN_fi: for conduction states $|c\mathbf{k}\rangle$
 - WFNq_fi: for q-shifted valence states $|v\mathbf{k} + \mathbf{q}\rangle$

Direction of **q** = polarization of light= difference WFNq and in WFN

2. ABSORPTION – RANDOMLY SHIFTED K-GRIDS

WFN_fi, no k-shift

2. ABSORPTION

Sample absorption.inp

Unshifted grid (WFN_co)

 Both randomly shifted grids (WFN_fi and WFNq_fi)

 Broaden each delta function.

Interpolate eqp_co.dat

OUTLINE

Practical BSE Calculations

#1 – Theoretical and methodological overview

#2 – Typical BSE workflow in BerkeleyGW

ISSUES UNIQUE TO THE BSE CODE

- 1. Convergence
- 2. Analyzing results
- 3. Other features

1. CONVERGENCE

- There are 4 convergence parameters in a typical BSE calculation:
 - # of <u>k-points</u> in the <u>fine</u> grid
 - # of <u>bands</u> in the <u>fine</u> grid
 - # of <u>k-points</u> in the <u>coarse</u> grid
 - # of <u>bands</u> in the <u>coarse</u> grid
- Some rules of thumb:
 - # of <u>bands</u> in <u>fine</u> grid: energy window + binding energy (~ EASY)
 - # of <u>bands</u> in the <u>coarse</u> grid: estimate from **inteqp.x**
 - # of <u>k-points</u> in <u>coarse</u> grid ~ sigma.x (FOR BULK SYSTEMS ONLY)

2. ANALYZING EXCITONS

- Optical spectrum : $\epsilon_2(\omega), \ \epsilon_1(\omega)$
 - absorption_noeh.dat:GW-RPA
 - absorption_eh.dat:GW-BSE
- Eigenvalues of the BSE equation :
 - eigenvalues.dat: useful to see if there are degeneracies, splitting, etc.
- Where the exciton is coming from:
 - summarize_eigenvectors.x
 - Need to set the flag write_eigenvectors in absorption.inp

3. OTHER FEATURES

- Some other features:
 - Haydock/Lanczos methods: iterative solution for the absorption spectrum. No evecs can be obtained.
 - Unrestricted interpolation: improves the quality of the interpolation by allowing mixtures of conduction and valence states. Important for metals!
 - Momentum operator: allows you not to use WFNq_fi file (but neglects non-local part of PP and)

- Approximations:
 - Tamm-Dancoff approximation (optional)
 - Static screening

SUMMARY

- BSE needs to be solved on fine k-grid
- BGW interp.: projection of fine WFNs onto coarse WFNs
 - Need to include more bands in kernel calculation
- WFNs:
 - Kernel: WFN_co
 - Absorption: WFN_co, WFN_fi, WFNq_fi
 - WFN_co: unshifted
 - WFN_fi: random k-shift
 - WFNq_fi: random k-shift + q-shift (dir. = pol. of light)
- 4 convergence parameters: {bands, kpts} x {co, fi}

Yesterday

HANDS-ON SESSION 2 – ABSORPTION SPECTRUM OF SILICON

Goals:

- Reproduce plots on the left
- Partial convergence study wrt kpoint sampling and number of bands

M. Rohlfing, S. G. Louie, PRB 62, 8 (2000).

EXTRA SLIDES

BERKELEYGW INTERPOLATION SCHEME

inteqp.out from yesterday's session:

```
Max. error in norm of transformation coefficients (1 - \sum_co |d_fi,co|
^2):
- For valence states: 2.887E-01
- For conduction states: 1.000E+00
WARNING: there are fine/coarse transformation coefficients with 2-norm < 95%.
To improve convergence, you might want to consider:
- using the "unrestricted_transformation" flag in the input file
- including more bands from the coarse WFN_co file
(number_*_bands_coarse)
- using a coarse WFN_co file with a denser k-mesh
```

- Error = 100% for conduction states?!
- Where is it coming from?

BERKELEYGW INTERPOLATION SCHEME

dcmat_norm.dat from yesterday's session:

		Norm of dcc matrices : Spins =							1
		k	k-point		i	k_co	С	dist	dcc ^2
_ (0.500	 ,	0.500 ,	0.500)	13	1	0.000	1.000000
(0.367	,	0.000 ,	0.367)	18	9	0.144	0.878516
(0.367	,	0.000 ,	0.367)	18	10	0.144	0.000000
(0.378	,	0.000 ,	0.378)	58	1	0.150	0.988656

Band crossing. Look at inteqp.inp:

number_val_bands_coarse 4	
number_val_bands_fine 4	
number_cond_bands_coarse 10	
number_cond_bands_fine 10	

- #fi bands = # co bands! This is a bad idea is general!!
- But we didn't plot the 10th cond. band, so it's alright