1. A particle of mass m is in a one-dimensional harmonic oscillator potential of frequency ω , whose Hamiltonian is

$$\hat{H} = \frac{1}{2m} \left[\hat{p}^2 + (m\omega \hat{x})^2 \right] = \hbar \omega \left(\hat{a}_- \hat{a}_+ - \frac{1}{2} \right),$$

where \hat{a}_+ , \hat{a}_- are respectively the raising and lowering operators.

(a) By applying the raising operator $\hat{a}_{+} = \frac{1}{\sqrt{2\hbar m\omega}} (-i\hat{p} + m\omega\hat{x})$ to the ground state wavefunction

$$\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega}{2\hbar}x^2},$$

derive the wavefunction $\psi_1(x)$ of the first excited energy eigenstate.

(b) Show explicitly that the result from part (a) is a solution of the time-independent Schrödinger equation.

2. An electron in a hydrogen atom is, at t = 0, in a state described by the normalized wavefunction

$$\psi(\vec{r},0) = A \left(4\psi_{100}(\vec{r}) + 3\psi_{211}(\vec{r}) - \psi_{210}(\vec{r}) + \sqrt{10}\psi_{21-1}(\vec{r}) \right)$$

where $\psi_{n\ell m}$ are the usual normalized energy eigenfunctions of the H atom.

(a) Find the normalization factor A.

(b) What is the expectation value of L^2 (the operator for the squared orbital angular momentum) at t = 0?

(c) What is the expectation value of the operator $B = -i(L_x L_y L_z - L_y L_x L_z)$ at t = 0?

(d) Is $\psi(\vec{r}, 0)$ an energy eigenfunction? Why or why not?

(e) Assuming that no measurement takes place, find the wavefunction $\psi(\vec{r},t)$ at all times.

3. A spin 1/2 particle is in a state described by the normalized spinor $\chi = \frac{1}{\sqrt{65}} \begin{pmatrix} 4 \\ 7i \end{pmatrix}$ where i

is the unit imaginary number. (Recall that a spinor $\chi = \begin{pmatrix} a \\ b \end{pmatrix}$ is a linear combination $a\chi_+ + b\chi_-$ of the spin-up state $\chi_+ = |\uparrow\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and the spin-down state $\chi_- = |\downarrow\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, both of which are eigenstates of S_z .)

(a) If you measured S_y of this particle, what values could you get, and what is the probability of each?

(b) What is the expectation value of S_y for this particle?

(c) Suppose you measure S_y and obtain the largest possible value. If you subsequently measure S_y a second time, what values could you get, and what is the probability of each?

(d) Suppose you measure S_y and obtain the largest possible value. If you subsequently measure S_z , what values could you get, and what is the probability of each?

For reference:

$$S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \qquad \qquad S_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix} \qquad \qquad S_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$

Formulas that might be helpful

$$J_{\pm} = J_x \pm i J_y, J_{-} |j m\rangle = \hbar \sqrt{(j+m)(j-m+1)} |j m - 1\rangle, J_{+} |j m\rangle = \hbar \sqrt{(j-m)(j+m+1)} |j m + 1\rangle.$$

$$L_x = i\hbar \left(\sin \phi \frac{\partial}{\partial \theta} + \cot \theta \cos \phi \frac{\partial}{\partial \phi} \right)$$
$$L_y = i\hbar \left(-\cos \phi \frac{\partial}{\partial \theta} + \cot \theta \sin \phi \frac{\partial}{\partial \phi} \right)$$
$$L_z = -i\hbar \frac{\partial}{\partial \phi}$$

$$[x, p_x] = i\hbar$$

 $[L_x, L_y] = i\hbar L_z$ and cyclic permutations