a tutorial on inq

Lawrence Livermore National Laboratory xavier@llnl.gov

Xavier Andrade, A. Correa and T. Ogitsu

we tricked you into thinking you were going to learn to use an electronic structure program today...

you are going to write your own

Project started one year ago

Use modern C++ coding techniques

Objective: real-time TDDFT on GPUs

inq is a library

QBall

Clean design from scratch: 13k lines of code

Plane-wave and pseudopotentials

Features

Designed to run on GPU supercomputers

Modular and extensible implementation

Distribution

Free software LGPL3 license

Under heavy development

Available now from http://gitlab.com/npneq/inq

traditional paradigm

developers

electronic structure code

fortran / c / c++

arbitrary format

ing paradigm

developers

inq library

users

input file

user scripts

bash / python

users

inq-based programs

Example of an ing "input file"

double distance = 2.0;

vector<atom> geo; geo.push back("N" | vec3d(0.0, 0.0, -distance/2.0)); geo.push back("N" | vec3d(0.0, 0.0, distance/2.0));

cell super = cell::cubic(3.0, 3.0, 6.0) | cell::periodic();

systems::ions ions(super, geo);

systems::electrons electrons(ions, basis::cutoff energy(30.0));

auto result = ground_state::calculate(ions, electrons, interaction::dft(), scf::conjugate gradient() | scf::mixing(0.1));

Compiling an inq code

To make compilation easy we provide inc++, a compiler wrapper that pases all the options and libraries required

inc++ nitrogen.cpp -o nitrogen

Conclusions

Not your standard electronic structure code

Work in progress, many features missing

Use one language, not three

Suggestions and contributions are welcome

Today's exercises

Exercise O: load inq in your terminal

Exercise 1: calculate a potential energy surface and optimize a geometry

Excercise 2: calculate a new observable

Tutorial location:

https://gitlab.com/npneq/inq/-/wikis/Tutorial